Kinetic Models for Magnetized Plasmas

Alexandre Rege
Supervisors: Frédérique Charles and Bruno Després

Laboratoire Jacques-Louis Lions

Thesis Defense
October 18, 2021

Introducing the magnetized Vlasov-Poisson system

The Bernstein-Landau paradox

Propagation of velocity moments and uniqueness for the magnetized Vlasov-Poisson system

Outline

Introducing the magnetized Vlasov-Poisson system

The Bernstein-Landau paradox

Propagation of velocity moments and uniqueness for the magnetized Vlasov-Poisson system

Plasmas

Definition (Plasma)

Plasma is a state of matter, characterized by an important ionization of particles.

- Term " plasma" first used by Irving Langmuir ${ }^{1}$ to describe an ionized gas.
- Plasma represents more than 99% of ordinary matter in the universe.

[^0]
Nuclear fusion

Definition (Nuclear fusion)

Combination of two atomic nuclei to form one atomic nuclei.

- Fusion of light nuclei releases enormous amounts of energy.
- This reaction takes place in plasmas under certain conditions: very high temperature and high enough particle density.
- One approach to harness nuclear fusion of light nuclei is via magnetic confinement.

Magnetic confinement fusion

- Use an intense external (not self-induced) magnetic field B to confine the hot plasma.
- Feasibility of controlled nuclear fusion: ITER tokamak under construction in Cadarache (south of France).

Kinetic formalism and the Vlasov equation

Trajectory $(X(t), V(t))$ of one particle of mass m subject to a force $F(t)$ given by:

$$
\left\{\begin{align*}
\dot{X}(t) & =V(t) \tag{1}\\
\dot{V}(t) & =\frac{1}{m} F(t) .
\end{align*}\right.
$$

Large number of identical particles allows for a kinetic description of the system. $f(t, x, v)$ is the number density of particles which are located at the position x and have velocity v at time t and satisfies:

$$
\begin{equation*}
\partial_{t} f(t, x, v)+v \cdot \nabla_{x} f(t, x, v)+\frac{1}{m} F(t) \cdot \nabla_{v} f(t, x, v)=0 \tag{2}
\end{equation*}
$$

with $(t, x, v) \in \mathbb{R}^{+} \times X^{3} \times \mathbb{R}^{3}, X=\mathbb{R}$ or $X=\mathbb{T}$.

The magnetized Vlasov-Poisson system for electrons

- At the time scale of electrons: ions are static $\Longrightarrow f_{i o n}$ is constant.
- At the time scale of ions: electrons are at thermal equilibrium $\Longrightarrow f_{\text {electron }}=$ Maxwell-Boltzmann type distribution.

At the time scale of electrons, we have:

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{x} f+\frac{q_{e}}{m_{e}}(E+v \wedge B) \cdot \nabla_{v} f=0, \tag{3}\\
\operatorname{div}_{x} E(t, x)=\frac{q_{i o}}{\epsilon_{0}} \int_{\mathbb{R}^{3}} f_{i o n}(x, v) d x d v+\frac{q_{e}}{\epsilon_{0}} \int_{\mathbb{R}^{3}} f(t, x, v) d x d v,
\end{array}\right.
$$

with $f \equiv f(t, x, v)$ the distribution function of electrons, $f_{i o n}(x, v)$ the constant ion distribution, $E \equiv E(t, x)$ the self-consistent electric field and $B \equiv B(t, x)$ the given external magnetic field.

Outline

Introducing the magnetized Vlasov-Poisson system

The Bernstein-Landau paradox

Propagation of velocity moments and uniqueness for the magnetized Vlasov-Poisson system

Landau damping

Exponential decrease in time of longitudinal waves in plasma.

- First predicted by Landau with the linearized Vlasov-Poisson system where he showed damping of the electric field $E .^{2}$

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{x} f+\frac{q}{m} E \cdot \nabla_{v} f_{0}=0, \tag{4}\\
\partial_{x} E=\frac{q}{\epsilon_{0}} \int f d v_{1} d v_{2}
\end{array}\right.
$$

with $f=f(t, x, v),(t, x, v) \in \mathbb{R}_{+} \times \mathbb{T}^{3} \times \mathbb{R}^{3}$ the distribution of electrons and $f_{0}=e^{-\frac{|v|^{2}}{2}}$ the equilibrium Maxwellian distribution.

- Using the Fourier-Laplace transform, Landau showed the damping of the electric field

$$
\begin{equation*}
\left|E_{k}(t)\right| \leq C e^{-\alpha_{k} t} . \tag{5}
\end{equation*}
$$

- Irreversible behavior observed in a reversible in time system.
- Recently extended to the nonlinear setting by Mouhot and Villani ${ }^{3}$.

[^1]
The paradox

The Bernstein-Landau paradox

"In unmagnetized plasmas, waves exhibit Landau Damping, while in magnetized plasmas, waves perpendicular to the magnetic field are exactly undamped, independently of the strength of the magnetic field".

- Magnetized plasmas first studied by Bernstein ${ }^{4}$.
- Other physical works ${ }^{5}$ have highlighted a discontinuity between the theory of unmagnetized plasmas and the theory of magnetized plasmas, thus speaking of a paradox.
- Very few mathematical papers, recently studied in ${ }^{6}$ using Fourier-Laplace in a 3d-3v setting.

[^2]
Numerical illustration of the influence of B : magnetic recurrence

Figure: Damped and undamped electric field

This is a magnetic recurrence ${ }^{7}$.
${ }^{7}$ Not a numerical recurrence Recurrence phenomenon for Vlasov-Poisson simulations on regular finite element mesh, M. Mehrenberger, L. Navoret, N. Pham, Commun. Comput. Phys., 2020.

The 1d-2v framework

The 1d-2v magnetized Vlasov-Poisson system

$$
\left\{\begin{array}{l}
\partial_{t} f+v_{1} \partial_{x} f-E \partial_{v_{1}} f+\underbrace{\omega\left(-v_{2} \partial_{v_{1}}+v_{1} \partial_{v_{2}}\right) f}_{=-v \wedge B}=0 \tag{6}\\
\partial_{x} E=2 \pi-\int f d v_{1} d v_{2}
\end{array}\right.
$$

- The unknowns are the density of electrons $f\left(t, x, v_{1}, v_{2}\right) \geq 0$ and the electric field $E(t, x)$.
- The domain is $\Omega=\mathbb{T} \times \mathbb{R}^{2}, \quad \mathbb{T}=[0,2 \pi]_{\text {per }}$ is the 1 D-torus.
- Here $\omega>0$ is the constant cyclotron frequency for electrons ($B=(0,0, \omega)$).
- $\frac{q_{e}}{m_{e}}$ normalized to -1 .
- lons are considered as a motionless background of neutralizing positive charge.

Linearized system

We linearize (6) by writing

$$
f=f_{0}+\varepsilon \sqrt{f_{0}} u+O\left(\varepsilon^{2}\right) \text { and } E=\varepsilon F+O\left(\varepsilon^{2}\right) .
$$

where $\left(f_{0}, E_{0}\right)=\left(\exp \left(-\frac{v_{1}^{2}+v_{2}^{2}}{2}\right), 0\right)$ is a stationary solution of (6).
Linearized Vlasov-Poisson with magnetic field

$$
\left\{\begin{array}{l}
\partial_{t} u+v_{1} \partial_{x} u+F v_{1} e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}}+\omega\left(-v_{2} \partial_{v_{1}}+v_{1} \partial_{v_{2}}\right) u=0 \tag{7}\\
\partial_{x} F=-\int u e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} d v_{1} d v_{2}
\end{array}\right.
$$

- $\int u e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} d x d v_{1} d v_{2}=0$. (total mass equal zero)
- $\int F d x=0$. (F is derived from a potential)

Reformulation with the Ampère equation

We can rewrite the system with the Ampère equation because both systems are equivalent.
The linear 1d-2v Vlasov-Ampère system

$$
\left\{\begin{array}{l}
\partial_{t} u+v_{1} \partial_{x} u+F v_{1} e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}}+\omega\left(-v_{2} \partial_{v_{1}}+v_{1} \partial_{v_{2}}\right) u=0, \tag{8}\\
\partial_{\mathbf{t}} \mathbf{F}=\mathbf{1}^{*} \int \mathbf{u} \mathbf{e}^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}} \mathbf{v}_{\mathbf{1}} \mathbf{d v}_{\mathbf{1}} \mathbf{d v}_{\mathbf{2}} . \\
\quad \text { with } 1^{*} g(x)=g(x)-\frac{1}{2 \pi} \int_{\mathbb{T}} g(x) d x .
\end{array}\right.
$$

A self-adjoint Vlasov-Ampère operator

Final formulation

$$
\left.\begin{array}{l}
\partial_{t}\binom{u}{F}=i H\binom{u}{F}, H=i(\underbrace{v_{1} \partial_{x}+\omega\left(v_{2} \partial_{v_{1}}-v_{1} \partial_{v_{2}}\right)}_{:=H_{0}} \left\lvert\, v_{1} e^{-\frac{v_{1}^{2}+v_{2}^{2}}{4}}\right. \\
-1^{*} \int v_{1} e^{-\frac{v_{1}^{2}+2_{2}^{2}}{4}} \cdot d v_{1} d v_{2}
\end{array}\right) .
$$

and H a self-adjoint operator with domain $D(H):=D\left(H_{0}\right) \times L_{0}^{2}(\mathbb{T})$.

Spectral properties of Vlasov equations

- For a general self-adjoint operator H with an ambient Hilbert space \mathcal{H} : then we have the following decomposition of \mathcal{H} in terms of the spectrum of $H: \mathcal{H}=\mathcal{H}_{H}^{a c} \oplus \mathcal{H}_{H}^{s c} \oplus \mathcal{H}_{H}^{p p} .{ }^{8}{ }^{9}$
- Spectrum of the Vlasov-Ampère operator with $\omega=0$ studied in ${ }^{10}$ ${ }^{11}$: the operator has only absolutely continuous spectrum and a kernel (as expected) $\mathcal{H}=\operatorname{ker} H \oplus \mathcal{H}_{H}^{a c}$.

[^3]
Discrete spectrum for the Vlasov-Ampère operator

Theorem (Charles, Després, R., Weder ${ }^{12}$)
We have completeness of the eigenspaces:

$$
\mathcal{H}=\mathcal{H}_{H}^{p p},
$$

and the eigenvalues of H are $0, m \omega$ and $\lambda_{m}, m \neq 0$.
Two different proofs:

- Direct computations.
- Weyl theorem on the invariance of the essential spectrum.

Explanation for the Bernstein-Landau paradox

The magnetic term $(v \wedge B) \cdot \nabla_{v} f$ can be seen as a perturbation that modifies the domain of the Vlasov-Ampère operator.

[^4]
Numerical illustration: initialization

Objective: compare the numerical and theoretical solutions of Vlasov-Ampère when initializing with an eigenvector.

- We consider an eigenvector $\left(w_{n, m}, F_{n}\right)$ associated to the Fourier mode $n \neq 0$ and the eigenvalue λ_{m}, so the solution (u, F) is given by

$$
(u, F)(t)=e^{i \lambda_{m} t}\left(w_{n, m}, F_{n}\right) .
$$

- $w_{n, m}$ and F_{n} are given by

$$
w_{n, m}=e^{i n\left(x-\frac{v_{2}}{\omega}\right)} e^{-\frac{r^{2}}{4}} \sum_{p \in \mathbb{Z}^{*}} \frac{p \omega}{p \omega+\lambda_{m}} e^{p i \varphi} J_{p}\left(\frac{n r}{\omega}\right) \text { and } F_{n}=-i n e^{i n x} .
$$

- λ_{m} is one of the roots of a secular equation given by:

$$
\alpha(\lambda)=-1-\frac{2 \pi}{n^{2}} \sum_{m \in \mathbb{Z}^{*}} \frac{m \omega}{m \omega+\lambda} \int_{0}^{\infty} e^{-\frac{r^{2}}{2}} J_{m}\left(\frac{n r}{\omega}\right)^{2} r d r=0 .
$$

Numerical illustration: secular equation

α has a unique root in

-] $m \omega,(m+1) \omega[$ for $m \geq 1$,
-] $(m-1) \omega, m \omega[$ for $m \leq-1$.

For $(n, m)=(1,2)$, we compute $\lambda_{2} \approx 1.19928$.

Numerical illustration: results

Simulations with a classical "backward" semi-lagrangian scheme, $N_{x}=33, N_{v_{1}}=N_{v_{2}}=63, L_{x}=2 \pi, L_{v_{1}}=L_{v_{2}}=10, \omega=0.5, n=1$, and $\mathbf{T}_{\mathbf{f}}=\frac{\pi}{2 \lambda_{\mathrm{m}}}$.

Figure: Real and imaginary parts of u in V1-V2 plane for $x=0$.

Outline

Introducing the magnetized Vlasov-Poisson system

The Bernstein-Landau paradox

Propagation of velocity moments and uniqueness for the magnetized Vlasov-Poisson system

Back to the nonlinear system in $\mathbb{R}^{3} \times \mathbb{R}^{3}$

$$
\left\{\begin{array}{l}
\partial_{t} f+v \cdot \nabla_{x} f+(E+v \wedge B) \cdot \nabla_{v} f=0 \tag{VPwB}\\
E(t, x)=\int_{\mathbb{R}^{3}} \int_{\mathbb{R}^{3}} \frac{x-y}{|x-y|} f(t, y, v) d v d y
\end{array}\right.
$$

Energy of the system and macroscopic density ρ

$$
\begin{aligned}
\mathcal{E}(t) & :=\frac{1}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{2} f(t, x, v) d x d v+\frac{1}{2} \int_{\mathbb{R}^{3}}|E(t, x)|^{2} d x \\
\rho(t, x) & :=\int_{\mathbb{R}^{3}} f(t, x, v) d v
\end{aligned}
$$

Results on existence of solutions in the unmagnetized case:

- Existence of weak solutions [Arsenev, 1975]
- Small initial data [Bardos, Degond, 1985]
- Existence of smooth solutions [Pfaffelmoser, 1992]
- Propagation of velocity moments [Lions, Perthame, 1991]

We will first consider a constant B

$$
B=\left(\begin{array}{l}
0 \\
0 \\
\omega
\end{array}\right)
$$

Differential inequality on M_{k}

Let $k \geq 0$, the velocity moment of order k is defined by

$$
M_{k}(t):=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{k} f(t, x, v) d v d x
$$

Propagation of velocity moments:

$$
\begin{aligned}
& \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{k} f^{i n}(x, v) d v d x<\infty \Longrightarrow \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{k} f(t, x, v) d v d x<\infty \\
&\left|\frac{d}{d t} M_{k}(t)\right|=\left.\left|\iint\right| v\right|^{k}\left(-v \cdot \nabla_{x} f-(E+v \wedge B) \cdot \nabla_{v} f\right) d v d x \mid \\
&=\left.\left|\iint\right| v\right|^{k} \operatorname{div}_{v}((E+v \wedge B) f) d v d x \mid, \\
&=\left.\left|\iint k\right| v\right|^{k-2} v \cdot(E+v \wedge B) f d v d x \mid \\
& \leq C\|E(t)\|_{k+3} M_{k}(t)^{\frac{k+2}{k+3}}
\end{aligned}
$$

Next step: we need to control of $\|E(t)\|_{k+3}$ with $M_{k}(t)^{\alpha}$ with $\alpha \leq \frac{1}{k+3}$.

A representation formula for ρ

$$
\begin{gather*}
\partial_{t} f+v \cdot \nabla_{x} f+(v \wedge B) \cdot \nabla_{v} f=-E \cdot \nabla_{v} f \\
\left\{\begin{array}{l}
\frac{d}{d s}(X(s), V(s))=(V(s), V(s) \wedge B)=\left(V(s),\left(\omega V_{2}(s),-\omega V_{1}(s), 0\right)\right), \\
(X(t), V(t))=(x, v), \\
\\
X(s)=\left(\begin{array}{c}
x_{1}+\frac{v_{1}}{\omega} \sin (\omega(s-t))+\frac{v_{2}}{\omega}(1-\cos (\omega(s-t))) \\
x_{2}+\frac{v_{1}}{\omega}(\cos (\omega(s-t))-1)+\frac{v_{2}}{\omega} \sin (\omega(s-t)) \\
\left.x_{3}+v_{3}(s-t)\right)
\end{array}\right) \\
V(s)=\left(\begin{array}{c}
v_{1} \cos (\omega(s-t))+v_{2} \sin (\omega(s-t)) \\
-v_{1} \sin (\omega(s-t))+v_{2} \cos (\omega(s-t)) \\
v_{3}
\end{array}\right),
\end{array}\right. \\
\rho(t, x)=\underbrace{\int_{v} f^{i n}(X(0), V(0)) d v}_{=: \rho_{0}(t, x)}+\operatorname{div}_{x} \int_{0}^{t} \underbrace{\int_{v}\left(f H_{t}\right)(s, X(s), V(s)) d v d s}_{=: \sigma(s, t, x)} \tag{9}
\end{gather*}
$$

Singularities at multiples of the cyclotron period

$$
\begin{array}{r}
E(t, x)=-\left(\nabla \frac{1}{|\cdot|} \star \rho\right)(t, x)=E^{0}(t, x)+\tilde{E}(t, x), \\
\|E(t)\|_{k+3} \leq\left\|E^{0}(t)\right\|_{k+3}+\int_{0}^{t}\|\sigma(s, t, x)\|_{k+3} d s, \\
\|\sigma(s, t, \cdot)\|_{k+3} \leq C \frac{\sqrt{2}}{s}\left(\frac{\omega^{2} s^{2}}{2(1-\cos (\omega s))}\right)^{\frac{2}{3}} M_{k}(t-s)^{\frac{1}{k+3}} . \tag{10}
\end{array}
$$

Proposition (Propagation of moments on a finite interval) For all $0 \leq t \leq T_{\omega}:=\frac{\pi}{\omega}$ we have

$$
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{k} f(t, x, v) d x d v \leq C<+\infty
$$

with $C=C\left(k, \omega,\left\|f^{i n}\right\|_{1},\left\|f^{i n}\right\|_{\infty}, \mathcal{E}_{i n}, M_{k}\left(f^{i n}\right)\right)$.

Propagation of moments for all time

We have that

- $\left\|f^{i n}\right\|_{1}=\left\|f\left(T_{\omega}\right)\right\|_{1}$ and $\left\|f^{i n}\right\|_{\infty}=\left\|f\left(T_{\omega}\right)\right\|_{\infty}$,
- $\mathcal{E}\left(T_{\omega}\right) \leq \mathcal{E}_{\text {in }}$,
- $M_{k}\left(f\left(T_{\omega}\right)\right) \leq C\left(k, \omega,\left\|f^{i n}\right\|_{1},\left\|f^{i n}\right\|_{\infty}, \mathcal{E}_{\text {in }}, M_{k}\left(f^{i n}\right)\right)$.

This means $f\left(T_{\omega}\right)$ verifies the same assumptions as $f^{i n} \Longrightarrow$ we can show propagation of moments for all time by induction.

Additional results

- Propagation of the regularity of $f^{\text {in }}$.
- Uniqueness if $\rho \in L^{\infty}\left([0, T] \times \mathbb{R}^{3}\right)^{13}$.

[^5]
Propagation of velocity moments for (VPwB)

Theorem (R. ${ }^{14}$)
Let $k_{0}>3, T>0, f^{\text {in }}=f^{\text {in }}(x, v) \geq 0$ a.e. with $f^{\text {in }} \in L^{1} \cap L^{\infty}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)$ and assume that

$$
\begin{equation*}
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{k_{0}} f^{i n} d x d v<\infty . \tag{11}
\end{equation*}
$$

Then there exists $C>0$ and a weak solution f to (VPwB) with $B=(0,0, \omega)$ such that

$$
\begin{equation*}
\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{k_{0}} f(t, x, v) d x d v \leq C<+\infty, \quad 0 \leq t \leq T \tag{12}
\end{equation*}
$$

with C that depends on

$$
\begin{equation*}
T, k_{0}, \omega, \mathcal{E}_{i n},\left\|f^{i n}\right\|_{1},\left\|f^{i n}\right\|_{\infty}, \mathcal{E}_{i n}, M_{k}\left(f^{i n}\right) \tag{13}
\end{equation*}
$$

[^6]
Uniqueness in the unmagnetized case

Theorem (Miot ${ }^{15}$)
Let $T>0$. Then there exists at most one solution
$f \in L^{\infty}\left([0, T], L^{1} \cap L^{\infty}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)\right)$ to Vlasov-Poisson such that

$$
\begin{equation*}
\sup _{[0, T]} \sup _{p \geq 1} \frac{\|\rho(t)\|_{p}}{p}<+\infty . \tag{14}
\end{equation*}
$$

New uniqueness criterion which allows for solutions with unbounded ρ.

[^7]
Characteristics

Now we have $B:=B(t, x)$ such that

$$
\begin{equation*}
B \in W^{1, \infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right) \tag{15}
\end{equation*}
$$

$$
\left\{\begin{array}{l}
\frac{d}{d s} X(s ; t, x, v)=V(s ; t, x, v) \\
\frac{d}{d s} V(s ; t, x, v)=E(s, X(s ; t, x, v))+V(s ; t, x, v) \wedge B(s, X(s ; t, x, v))
\end{array}\right.
$$

Consider two solutions f_{1}, f_{2} with $\left(X_{1}, V_{1}\right),\left(X_{2}, V_{2}\right)$ the corresponding characteristics. We study the distance

$$
\begin{equation*}
D(t)=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}\left|X_{1}(t, x, v)-X_{2}(t, x, v)\right| f^{i n}(x, v) d x d v . \tag{16}
\end{equation*}
$$

Additional terms in the magnetized case

$$
\begin{aligned}
D(t) & \leq \int_{0}^{t} \int_{0}^{s} \int_{\mathbb{R}^{6}}\left|E_{1}\left(\tau, X_{1}(\tau)\right)-E_{2}\left(\tau, X_{2}(\tau)\right)\right| \\
& +\left|V_{1}(\tau) \wedge B\left(\tau, X_{1}(\tau)\right)-V_{2}(\tau) \wedge B\left(\tau, X_{2}(\tau)\right)\right| f^{i n}(x, v) d x d v d \tau d s \\
& \leq \int_{0}^{t} \int_{0}^{s} \int_{\mathbb{R}^{6}}\left|E_{1}\left(\tau, X_{1}(\tau)\right)-E_{2}\left(\tau, X_{2}(\tau)\right)\right| f^{i n}(x, v) d x d v d \tau d s \\
& +\|B\|_{\infty} \int_{0}^{t} \int_{0}^{s} \int_{\mathbb{R}^{6}}\left|V_{1}(\tau)-V_{2}(\tau)\right| f^{\text {in }}(x, v) d x d v d \tau d s \\
& +\int_{0}^{t} \int_{0}^{s} \int_{\mathbb{R}^{6}}\left|V_{2}(\tau)\right|\left|B\left(\tau, X_{1}(\tau)\right)-B\left(\tau, X_{2}(\tau)\right)\right| f^{i n}(x, v) d x d v d \tau d s, \\
& =I(t)+J(t)+K(t) .
\end{aligned}
$$

The additional terms $J(t), K(t)$ are controlled with $\left\|\rho_{1}\right\|_{p},\left\|\rho_{2}\right\|_{p}$ and velocity moments of $f^{i n}$.

Uniqueness criterion with a general magnetic field

Theorem (R.)
Let $T>0$ and $B:=B(t, x)$ such that $B \in W^{1, \infty}\left(\mathbb{R}_{+} \times \mathbb{R}^{3}\right)$. If $f^{\text {in }}$ satisfies

$$
\begin{equation*}
\forall k \geq 1, \quad \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{k} f^{i n}(x, v) d x d v \leq\left(C_{0} k\right)^{\frac{k}{3}},{ }^{16} \tag{17}
\end{equation*}
$$

with C_{0} a constant independent of k, then there exists at most one solution $f \in L^{\infty}\left([0, T], L^{1} \cap L^{\infty}\left(\mathbb{R}^{3} \times \mathbb{R}^{3}\right)\right)$ to the Cauchy problem for the magnetized Vlasov-Poisson system. If such a solution exists then it will verify

$$
\begin{equation*}
\sup _{[0, T]} \sup _{p \geq 1} \frac{\|\rho(t)\|_{p}}{p}<+\infty \tag{18}
\end{equation*}
$$

[^8]Propagation of moments with a general magnetic field

$$
\begin{align*}
& Q(t):=\sup \left\{\int_{0}^{t}|E(s, X(s ; 0, x, v))| d s,(x, v) \in \mathbb{R}^{3} \times \mathbb{R}^{3}\right\}, \tag{19}\\
& N_{T}:=\sup _{0 \leq t \leq T} Q(t) \leq C, \tag{20}\\
& M_{k}(t)=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|V(t ; 0, x, v)|^{k} f^{i n}(x, v) d v d x, \\
& \quad \leq \iint_{\mathbb{R}^{3} \times \mathbb{R}_{3}}\left(|v|+N_{T}\right)^{k} \exp \left(k t\|B\|_{\infty}\right) f^{\text {in }}(x, v) d v d x .
\end{align*}
$$

In the unmagnetized case we have:
Theorem (Pallard ${ }^{17}$)
Let $T>0$, then for all $0 \leq t \leq T$,

$$
\begin{equation*}
Q(t) \leq C\left(T^{\frac{1}{2}}+T^{\frac{1}{5}}\right) . \tag{21}
\end{equation*}
$$

[^9]
Estimates on the characteristics

Conjecture
For all time t such that $0 \leq t \leq T_{B}$,

$$
\begin{equation*}
Q(t) \leq C \exp \left(T_{B}\|B\|_{\infty}\right)^{\frac{2}{5}}\left(T_{B}^{\frac{1}{2}}+T_{B}^{\frac{7}{5}}\right) \tag{22}
\end{equation*}
$$

- The conjecture is true if we assume $B:=B(t)$ independent of x.
- Difficulty when $B:=B(t, x)$: control of the difference between velocity characteristics $\left|V(s)-V_{*}(s)\right|$ in terms of $Q(t)$ and $\left|V(s)-V_{*}(s)\right|:$

$$
\begin{aligned}
\left|V(s)-V_{*}(s)\right| & \leq\left|v-v_{*}\right|+2 Q(t) \\
& +\int_{s}^{t}\left|V(s) \wedge B(s, X(s))-V_{*}(s) \wedge B\left(s, X_{*}(s)\right)\right| d s .
\end{aligned}
$$

Thank you for your attention!

[^0]: ${ }^{1}$ I. Langmuir, Oscillations in Ionized Gases, Proceedings of the National Academy of Science, 14:627-637, 1928.

[^1]: ${ }^{2}$ L. Landau, On the vibration of the electronic plasma, J. Phys. USSR, 1946.
 ${ }^{3}$ C. Mouhot and C. Villani, On Landau damping, Acta Math., 2011.

[^2]: ${ }^{4}$ I. Bernstein, Waves in a Plasma in a Magnetic Field, Phy. Review, 1958.
 ${ }^{5}$ A. I. Sukhorukov and P. Stubbe, On the Bernstein-Landau paradox, Phy. of Plasmas, 1997.
 ${ }^{6}$ J. Bedrossian and F. Wang, The linearized Vlasov and Vlasov-Fokker-Planck equations in a uniform magnetic field, J. Stat. Phys., 2020.

[^3]: ${ }^{8}$ T. Kato, Perturbation theory for linear operators, 1966.
 ${ }^{9}$ D.R. Yafaev, Scattering theory: Some old and new problems, 2000.
 ${ }^{10}$ B. Després, Symmetrization of Vlasov-Poisson Equations, SIAM J. Math. Anal., 2014.
 ${ }^{11}$ B. Després, Trace class properties of the linear Vlasov-Poisson equation, J. of Spectral Theory, 2021.

[^4]: ${ }^{12}$ F. Charles, B. Després, A. Rege and R. Weder, The magnetized Vlasov-Ampère system and the Bernstein-Landau paradox, J. Stat. Phys., 2021.

[^5]: ${ }^{13}$ G. Loeper, Uniqueness of the solution to the Vlasov-Poisson system with bounded density, 2006.

[^6]: ${ }^{14} \mathrm{~A}$. Rege, The Vlasov-Poisson system with a uniform magnetic field: propagation of moments and regularity, SIAM J. Math. Anal., 2021.

[^7]: ${ }^{15} \mathrm{E}$. Miot., A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system, Comm. Math. Phys., 2016.

[^8]: ${ }^{16} \mathrm{E}$. Miot, A uniqueness criterion for unbounded solutions to the Vlasov-Poisson system, Comm. Math. Phys., 2016.

[^9]: ${ }^{17}$ C. Pallard, Moment propagation for weak solutions to the Vlasov-Poisson system, Comm. Partial Differential Equations, 2012.

